電鍍廢水除鉻樹脂的物理結構與進化他的特點有:
1.他的吸附量較大,樹脂的飽和吸附量達10~16,
2.他的吸附速度快,是普通椰殼碳吸附速度的五倍以上,使用吸附柱串聯起來進行吸附的方法有很高的吸附速度
3.選擇性較好,對其他金屬離子(如銅,鎳,鐵,鉛等)的干擾程度小
4.抗污染性能較好,可以用純凈水或氯化鈉溶液對他進行清洗
5.適用范圍較廣,主要應用于氰化溶液中金的吸附,也可以適用于對酸性溶液甚至王水中溶解的金的吸附
6.適應條件寬,他對吸附條件PH值的要求不是太苛刻
7.提煉金的后處理方法多樣,可以進行液體解吸再火法提煉,也可以直接炭化后燒掉,直接提煉成單質金顆粒,回收率較高
8.可以對超低濃度的金貧液進行吸附,*小的金溶液濃度可以達到1PPM,這樣可以對含量超低的金貧液和廢液進行合理的回收及利用,減少不必要的浪費和損失 電鍍廢水除鉻樹脂的物理結構與進化離子交換樹脂常分為凝膠型和大孔型兩類。凝膠型樹脂的高分子骨架,在干燥的情況下內部沒有毛細孔。它在吸水時潤脹,在大分子鏈節間形成很微細的孔隙,通常稱為顯微孔。濕潤樹脂的平均孔徑為2~4nm(2×10-6~4×10-6mm)。這類樹脂較適合用于吸附無機離子,它們的直徑較小,一般為0.3~0.6nm。這類樹脂不能吸附大分子有機物質,因后者的尺寸較大,如蛋白質分子直徑為5~20nm,不能進入這類樹脂的顯微孔隙中。
離子交換樹脂
大孔型樹脂是在聚合反應時加入致孔劑,形成多孔海綿狀構造的骨架,內部有大量性的微孔,再導入交換基團制成。它并存有微細孔和大網孔,潤濕樹脂的孔徑達100~500nm,其大小和數量都可以在制造時控制。孔道的表面積可以增大到超過1000m2/g。這不僅為離子交換提供了良好的接觸條件,縮短了離子擴散的路程,還增加了許多鏈節活性中心,通過分子間的范德華引力產生分子吸附作用,能夠象活性炭那樣吸附各種非離子性物質,擴大它的功能。
離子交換樹脂
一些不帶交換功能團的大孔型樹脂也能夠吸附、分離多種物質,例如化工廠廢水中的酚類物。大孔樹脂內部的孔隙又多又大,表面積很大,活性中心多,離子擴散速度快,離子交換速度也快很多,約比凝膠型樹脂快約十倍。使用時的作用快、效率高,所需處理時間縮短。大孔樹脂還有多種優點:耐溶脹,不易碎裂,耐氧化,耐磨損,耐熱及耐溫度變化,以及對有機大分子物質較易吸附和交換,因而抗污染力強,并較容易再生。
離子交換樹脂
離子交換技術有相當長的歷史,某些天然物質如泡沸石和用煤經過磺化制得的磺化煤都可用作離子交換劑。但是,隨著現代有機合成工業技術的迅速發展,研究制成了許多種性能優良的離子交換樹脂,并開發了多種新的應用方法,離子交換技術迅速發展,在許多行業特別是產業和科研領域中廣泛應用。近年國內外生產的樹脂品種達數百種,年產量數十萬噸。